Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

First/Second Semester B.E. Degree Examination, December 2011 **Engineering Physics**

Time: 3 hrs.		Max. Marks:100
Note: 1. Answer any FIVE full questions at		

						Max. Marks: 100	
ľ	Note	3. A 4. F	Inswer to objective Physical constants : Telocity of light = (type questions on stype questions on stype questions on style="color: blue;" Electron mass = 9 to 28 × 10 ²⁸ /k mole; I	sneets other than ON 9.1 × 10 ⁻³¹ kg; Electro lanck's constant h = Permitivity if vacuu	m each part. The 5 of the answer booklet. The will not be valued. The charge $e = 1.6 \times 10^{-19} C$; $e 6.63 \times 10^{-34} JS$; Avogadro $e 6 = 8.85 \times 10^{-12} F/M$;	
				PAR			
1	a	. C i)	hoose your correct at The de – Broglie	nswer for the follow wavelength of a pa	ing:		
		-,		wavelengui of a pa			
			A) Zero	B) Infinite	C) $\frac{h}{p}$	D) $\frac{h}{r}$	
		ii)	The photoelectric	offortion 1	р		
		,	A) Above the thr	eshold wavelength	only if the wavelength	of light is	
			C) Below the thr	eshold wavelength	B) Zero		
		iii) Phase velocity v _p	base is email to	D) Equal to th	e threshold wavelength	
			c^2				
			A) $\frac{c^2}{v_{\text{group}}}$	B) $\frac{V_{group}}{c^2}$	C) $v_{group}^2 c$	D) $v_{group}^2 c^2$	
		:>	•	C	- •	- ·	
	iv) According to Wein's law, the wavelength of maximum intensity λ_m is						
			A) $\lambda_m \alpha T$	B) $\lambda_m \alpha \frac{1}{T}$	C) $\lambda_m \alpha T^4$	D) $\lambda_m \alpha \frac{1}{T^4}$	
	b. What are matter waves? Explain the Davission – Germer experiment to establish the wave nature of electrons.						
	c.	Cor	npare the momentum	m, the total energy	and the kinetic ene	(10 Marks) rgy of an electron with a	
		de -	- Broglio wavalan edi	- £ 1 Å	and the kinetic ene	igy of an electron with a	
_		uc	Brogne wavelength	or IA, with that o	f a photon with the sa	me wavelength. (06 Marks)	
2	a.	Cho	oose your correct ans	wer for the following	iσ :		
		i)	According the Hei	senberg's uncertaint	ty principle		
			A) $\Delta x \cdot \Delta P \ge \hbar/2$		B) $\Delta x \cdot \Delta P < \hbar /$	'2	
		• • •	C) $\Delta x \cdot \Delta P > \hbar^2$		D) $\Delta v \cdot \Delta D = \hbar^2$		
		ii)	If the uncertainty i	n the location of a	particle is equal to its	de - Broglie wavelength,	
				ts velocity will be	, , , , , , , , , , , , , , , , , , ,	broghe wavelength,	
			A) Its velocity		B) Half its veloc	city	
			C) Twice its veloci	ty	D) Four times it	s velocity	
		iii)					
			A) Finite	B) Infinite	C) Zero ^{-∞}	Divi	
		iv)		of a particle in one of	limensional box is E =	D) None of these	
			h^2				
			A) $\frac{h^2}{8mL^2}$	B) 0	C) $\frac{8mL^2}{h^2}$	$D) \frac{8m^2L^2}{h^2}$	

(04 Marks)

b.	Wha	t is wave function? Derive the one – dimen	sional time independent Schrodinger	wave		
	equation for an electron. (08 Marks)					
c.	A wave function is given by $\psi = A \sin [n\pi x/L]$ for the motion of a particle in a potential well of breadth L. Calculate the value of A, if x is the position of the particle along L.					
d.	An electron has a speed of 6×10^5 m/s with an accuracy of 0.01 %. With what accuracy one can locate the position of an electron? (04 Marks)					
a.	Cho	ose your correct answer for the following:				
	i)	In the free electron theory, the electric field	due to ion cores is			
		A) neglected	B) not constant			
		C) assumed to be constant	D) None of these			
ii) The expression of electric resistivity ρ is			,			
		$ne^2\tau$	" m			
		A) $\frac{ne^2\tau}{m}$	B) $\frac{m}{ne^2\tau}$			
		111				
		C) $\sqrt{\frac{ne^2\tau}{m}}$	D) $\sqrt{\frac{m}{ne^2r}}$			
		√ m	$V \text{ ne}^2 \tau$			
	iii)	At high temperatures, the mean free path λ ,	of an electron in a metal is proportion	nal to		
		A) $\frac{1}{}$	B) $\frac{1}{T}$			
		A) $\frac{1}{T^2}$	T T			
		C) T^2	D) Independent of temperature			
	iv)	Mobility M of an electron is				
		$\Delta \setminus \frac{E}{E}$	D) Vd			
		A) $\frac{E}{v_d}$	B) $\frac{v_d}{E}$ D) $\frac{v_d^2}{E}$ (04 M			
		C) $\frac{E^2}{V}$	₃₇ 2			
		C) =	$D) \frac{\mathbf{v_d}}{\mathbf{E}} \tag{04 N}$	Marks)		
•		v _d	-			
b.		the Matthiessen's rule. How does the ele	. —			
c.	_	urity and temperature?		Marks)		
d.	(whiteher)					
٠.	The the following in the second of constant of constants in a metal of following 1.567 × 10 szin, in					
	ine i	netal has 5.85 × 10 conduction electrons per	r m ² . (04 h	Marks)		
a.	Cho	ose your correct answer for the following:				
	i)	The electric dipole moment per unit volume	e is			
	,	A) Magnetization	B) Dipole moment			
		C) Electric polarization	D) Electric susceptibility			
	ii)	If the distance between the plates of a		d. the		
	•	capacitance is	· · · · · · · · · · · · · · · · · · ·	-,		
		A) Doubled	B) Halved			
		C) Increased four times	D) Decreased four times			
	iii)	The magnetic dipole moment if measured in				
	,	B) Wb/m ²				
		A) Wb m ² C) Am ²	D) A/m			
	iv)	Some crystalline solids exhibit electric pol	•	his is		
	•	known as				
	A) ferroelectric effect B) hysteresis					
		C) piezoelectric effect		(arks)		

3

b. Describe different mechanisms of electrical polarization. (08 Marks) c. Write a note on Ferrites. (04 Marks) d. What is the polarization produced in sodium chloride by an electric field of 600 V/mm if it has a dielectric constant of 6? (04 Marks) PART - B Choose your correct answer for the following: 5 The rate of stimulated emission is A) Independent of the number of atoms in the exited state. B) Directly proportional to the energy density of the incident radiation. C) Inversely proportional to the energy density. D) None of the above. The lifetime of the metastable is about _____ sec A) 10^{-3} B) 10^{-13} C) 10^2 ii) B) 10⁻¹³ A) 10^{-3} D) 10⁻⁹ Two photons are coherent when iii) A) They travel at the same speed B) Their phases are different C) Their wavelengths are the same D) They obey Planck's equation iv) The lasers that are used in holography are ___ lasers B) Argon pulsed A) Solid state D) He - Ne C) Semiconductor (04 Marks) b. Discuss the three possible ways through which radiation interacts with the matter. (06 Marks) c. What is holography? Explain the construction of a hologram. (06 Marks) d. A He - Ne laser is emitting a laser beam with an average power of 4.5 MW. Find the number of photons emitted per second by the laser. The wavelength of the emitted radiation is 6328 A. (04 Marks) Choose your correct answer for the following: In a superconductor, critical magnetic field A) increases, if the temperature decreases B) does not depend on the temperature C) increases, if the temperature increases D) remains constant ii) When the electrons flows in the form of cooper pairs in materials A) they do not encounter any scattering B) the resistance factor vanishes C) the conductivity becomes infinity D) All the above iii) Propagation of light through optical fiber is because of B) Polarization A) Reflection D) Total internal reflection C) Interference The mechanisms through which attenuation takes place in optical fiber are iv) B) Scattering loss A) absorption loss C) radiation loss D) All of these (04 Marks) b. Obtain an expression for the numerical aperture in an optical fiber. (06 Marks) c. Distinguish between type I and type II superconductors. (06 Marks) d. The attenuation of light in an optical fiber is 3.6 dB/km. What fractional initial intensity remains after 1 km? (04 Marks)

7	a.	Choose your correct answer for the following: i) A unit cell contains						
		,			D) Two latt	ioo mainta		
			lattice point	_	B) Two latt	-		
			lattice point		D) Three la	-		
		,		f the plane parallel			νΔ1)	
		A) (100)		, , , ,	B) (010) C) (111) D) (001			
		,	rdination nu	mber of BCC struct				
		A) 6		B) 8	C) 2	D) 4		
		iv) Interplanar spacings of a cubic system dhkl is equal to						
		A) $\frac{1}{\sqrt{h^2}}$	$\frac{a}{+k^2+l^2}$	B) $\frac{a^3}{\sqrt{h^2 + k^2 + l^2}}$	C) $\left(\frac{a}{\sqrt{h^2+1}}\right)$	$\left(\frac{1}{k^2+l^2}\right)^3$ D)	$\frac{a^2}{\sqrt{h^2 + k^2 + l^2}}$	
	b.	(04 Ma						
c. Define atomic packing factor. Calculate the packing factor						SC and BCC str	ructures. (08 Marks)	
	d.	Calculate the atomic weight		iamond, given that 12.01.	the cube edge of	f its unit cell is	3.57 Å and the (04 Marks)	
8	a. Choose your correct answer for the following:							
		i) The physics of nanotechnology is also called as						
		A) Plasn	na physics		B) Nuclear	physics		
		C) Mes	scopic phy	sics	D) All the a	bove.		
				n 2 dim is called	•			
		A) wire			B) DOT			
		C) Film			D) Cluster			
		iii) Nonotub	es are		•			
		A) Stron			B) Non – re	active		
		•	stand high to	emperature	D) All the a			
		iv) The pro						
		, <u>-</u>	pelectricity		B) Peizoele			
		,	pton effect		•	nic emission	(04 Marks)	
	b.			Evaluin the proper	•		(08 Marks)	
							•	
	c.	detected by a non – destructive method using ultrasonics.					(08 Marks)	
		detected by a r	ion – uestru	ctive memor asing	uiuasomes.		foo mid 192	

* * * * *